
TOPIC 11: Measurement and data processing

11. 1  Uncertainty and error in measurement

	Understandings
· 11.1 U1 Qualitative data includes all non-numerical information obtained from observations not from measurement.

· 11.1 U2 Quantitative data are obtained from measurements, and are always associated with random errors/uncertainties, determined by the apparatus, and by human limitations such as reaction times.
· 11.1 U3 Propagation of random errors in data processing shows the impact of the uncertainties on the final result.
· 11.1 U4 Experimental design and procedure usually lead to systematic errors in measurement, which cause a deviation in a particular direction.
· 11.1 U5 Repeat trials and measurements will reduce random errors but not systematic errors.

	Applications and skills

· 11.1 AS1 Distinction between random errors and systematic errors. 
·  11.1 AS2 Record uncertainties in all measurements as a range (+) to an appropriate precision.
· 11.1 AS3 Discussion of ways to reduce uncertainties in an experiment.
· 11.1 AS4 Propagation of uncertainties in processed data, including the use of percentage uncertainties.
· 11.1 AS5 Discussion of systematic errors in all experimental work, their impact on the results and how they can be reduced.
· 11.1 AS6 Estimation of whether a particular source of error is likely to have a major or minor effect on the final result.
· 11.1 AS7 Calculation of percentage error when the experimental result can be compared with a theoretical or accepted result.
· 11.1 AS8 Distinction between accuracy and precision in evaluating results.


Quantitative data and qualitative data

· Qualitative data includes all non-numerical information obtained from observations not from measurement. Examples are colour changes, fizzing, flame, melting, … 
· Quantitative data are obtained from measurements, e.g. 21°C, 12.o g or 1.5 V. 
Uncertainty in quantitative data. 

When taking data from measurements (numerical data) of a physical quantity such temperature or mass, the data of the measurement is not the true value of that quantity.  This is because we can never determine the exact value of a physical quantity; every piece of quantitative data has an uncertainty because of random errors/uncertainties and systematic errors.
Precision and accuracy

When carrying our experiments there are two words we can use to describe the quality of the raw data.

Accuracy

Indicates how close the measured value is to the true value that usually is a literature value or an accepted value. Calculating the percentage error can be used to determine the accuracy of experimental work.
	percentage error  =
	measured value – known value
	 x  100 %

	
	known value
	


Precision
· Refers to how close the data from different measurements of the same physical quantity are to each other.  For example, a set of readings of 34.2g, 34.3g, 34.5 g and 34.3g have a great degree of precision as the range of values is 0.3g (= highest value – lowest value). 

· A greater degree of precision can be achieved if we use a measuring instrument which allows us to measure raw data to a greater number of significant figures.  For example, a balance which allows us to record masses such as 34.215g, 34.265g and 34.235g producing a range of values of 0.04g (greater precision than in the above example). 

However, you need to be aware of the following:

Example:  65.14g  (( 0.01g ) is more precise than 65.1 g (( 0.1g) but could be less accurate if the true value is 64.90 g.  This could be the result if a measurement instrument is used incorrectly e.g. the top of the meniscus is read instead of the bottom or not calibrated correctly.

Example of great precision but little accuracy: if the top of a meniscus is read (inaccurate method) in a pipette or a measuring cylinder (instrument with great precision).
	Random uncertainties

These are uncertainties caused by the limitation of the measuring instrument and it results in readings that are either above or below the exact value of the quantity you are measuring.  
The amount with which a value is above or below the exact value is indicated as an uncertainty range using the symbol ±. This allows us to determine the highest and lowest reading between which the exact value is.

Example of indicating uncertainty
The length of an object is 5.2 cm ( 0.1 cm 

This means that we are not completely certain about the last digit and that the length of the object could be between 5.3 cm and 5.1 cm.  The uncertainty range is 0.2 cm.

If we do not indicate the uncertainty clearly than it is assumed that the last digit is uncertain and that the accurate value is between 1 unit above and 1 unit below of whatever is the last digit.

For a value of 3.453g the accurate value is between 3.454g and 3.452g – a high level of precision. Uncertainty range is 0.002g.

Random uncertainties:

· affect the precision of the numerical data; the narrower the range, the more precise the data could be;
· act in both directions of the exact value;
· are indicated by the last digit in the numerical value as this digit is usually uncertain; 
· should be stated in the heading of a column in a results table e.g. mass ((0.01 g)
· random uncertainties cannot be eliminated but they can be reduced

· by taking repeated measurements and then averaging these so that the average is closer to the ‘true value’ than a single measurement; the average will always be between your lowest and highest value.
· using the most appropriate measuring tool.
Determining the uncertainty of a measuring instrument used in an experiment: 
Analogue measuring instruments

Digital measuring instruments

The uncertainty is half the smallest division e.g. if 1 cm is the smallest division that the uncertainty is indicted as ( 0.5 cm. in that case the raw data should be recorded to 1 decimal.

In a burette the smallest division is 0.1 cm3 so the uncertainty is ( 0.05 cm3 and raw data should be recorded to 2 decimals.

Smallest scale division e.g. if scale reads 50.001g than uncertainty is ( 0.001g.

Uncertainties of commonly used measuring instruments

electronic balance: ( 0.01g

burettes: ( 0.05 cm3
thermometers: ( 0.1 (C/K

stop watches: ( 0.05 seconds (allowing for reaction time)



	Systematic errors
· as a result of an imperfection/limitation in the equipment (e.g. not calibrated) and materials (not pure or not completely dehydrated) being used or by experimental method (no insulation used, no stirring, …) or processed the data (no extrapolation, have used average values, …) or have taken the measurements (parallax);
· affects the accuracy; 

· such an error always occurs in the same direction i.e. it either makes the data (and therefore also the processed result) always higher or lower than the ‘true value’ throughout the experiment;
· examples: 

· a balance incorrectly calibrated so it always reads the mass higher or lower; 

· consistently reading the burette wrong e.g. top of the meniscus; 

· using impure chemicals or chemicals which are not completely anhydrous when anhydrous chemicals are required;  

· measuring a dry mass when the chemical has not dried out yet;
· difficult to observe a distinct colour change during a titration;
· poor insulation in enthalpy experiments;
· reaction time when measuring a time interval; 

· using an assumed value
· can be reduced by improving the procedure, equipment or materials but not by repeated readings.


Precision and accuracy

When carrying our experiments there are two words we can use to describe the quality of the raw data.

Accuracy

Indicates how close the measured value is to the true value that usually is a literature value or an accepted value. Calculating the percentage error can be used to determine the accuracy of experimental work.
	percentage error  =
	measured value – known value
	 x  100 %

	
	known value
	


Precision
· refers to how close different readings of the same physical quantity are to each other.  For example, a set of readings of 34.2g, 34.3g, 34.5 g and 34.3g have a great degree of precision as the range of values is 0.3g (= highest value – lowest value). 

· however, a greater degree of precision can be achieved if we use a measuring instrument which allows us to measure raw data to a greater number of significant figures.  For example, a balance which allows us to record masses such as 34.215g, 34.265g and 34.235g producing a range of values of 0.04g (greater precision than in the above example). 

However, you need to be aware of the following:

Example:  65.14g  (( 0.01g ) is more precise than 65.1 g (( 0.1g) but could be less accurate if the true value is 64.90 g.  This could be the result if a measurement instrument is used incorrectly e.g. the top of the meniscus is read instead of the bottom or not calibrated correctly.

Example of great precision but little accuracy: if the top of a meniscus is read in a pipette or a measuring cylinder.
How are these two types of errors, precision and accuracy linked? 

	Measurements
	neither accurate nor precise


	precise but not accurate
	precise and accurate (=desired outcome)



	Evaluation
	large random and systematic error – poor technique or procedure

using less precise measuring instruments
	small random error but large systematic error
	small random error and very low systematic error


Significant figures

The SIGNIFICANT FIGURES in any value are the reliable digits; the greater the number of significant numbers we use the greater the degree of accuracy or precision of the measurement that we can claim.

When interpreting significant figures we assume that the last digit is the least unreliable or uncertain. 

In addition to the uncertainty range (±)we also use significant figures to indicate the degree of uncertainty or degree of precision of a reading. There should be correspondence between the random error of a measuring instrument and the number of significant figures used to record the measurements as shown by the examples below.

Examples

	measuring instrument and its degree of uncertainty
	example of how the measurement should be recorded

	balance, ( 0.001g
	343.987 g

	balance, ( 0.01g
	343.99 g

	thermometer, ( 0.5(C
	26.5 (C


There are some rules:
· all non-zero digits are significant;

· significant zero = 

· at the end of a number or to the right of the decimal point

· in the middle of a number
· non-significant zero = any zero to the left of a non-zero digit does not count;  see table below.
Examples: 

	value
	number of significant figures (digits)
	
	value
	number of significant figures (digits)

	34608
	5
	
	3.4608
	5

	0.3468
	4
	
	0.034608
	5

	3.4680
	5
	
	0.003468
	4

	0.03468
	4
	
	0.0034680
	5

	0.034680
	5
	
	0.0034608
	5


Using significant figures in calculated values
When calculating values in experiments, the final result cannot be more accurate than the least accurate numerical raw data.  Decimal places are the digits that follow the decimal point.

In the case of additions and subtractions, the calculated value can have any number of significant figures but should not have more decimal places than the number with the least decimal places. This is because the accuracy of the final answer can be no greater than the least accurate measurement.
	Example 1:  4.50 + 9.40 = 13.90
Final answer can have two decimal places as both numbers have two decimal places.

	Example 2:  The Mr of NaOH = 22.9 + 16.00 + 1.01  = 39.9

Final answer can only have 1 decimal place as the number with the least number of decimal places only has one decimal place. 


In the case of multiplication and division, the final result should only have as many significant figures as the number with the least number of significant figures used in the calculation. 
	Example 1: 1.43 x 235.6 = 336.908   but can only be expressed in 3 significant figures so it should state 1.43 x 235.6 = 337

	

	Example 2: 

In a molar enthalpy calculation

(H = mc(T  = 20.0g x 4.184 J/g (C  x 50.9 (C  =  4259.312 J         (least sf = 3)

number of moles = 1.00 mol dm3 x 0.0200 dm3 = 0.0200 mol

(H per mole = 4259.312 J/ 0.0200 mol = 212965.6 J mol-1 = 213 kJ mol-1    (3 sf)

	

	Example 3: 

In a molar enthalpy calculation

(H = mc(T  = 100.0g x 4.184 J/g (C  x 5.9 (C  =  2468.56  J         (least sf = 2)

number of moles = 1.00 mol dm3 x 0.0200 dm3 = 0.0200 mol

(H per mole =  2468.56 J/ 0.0200 mol = 123428 J mol-1 = 123.428 kJ mol-1

This answer can only be expressed in two significant figures that would be 12 that is an incomplete value.  In this situation it is best to use scientific notation i.e. 1.2 x 102.


All the above examples highlight the need to record raw data with as many decimal places that is allowed considering the uncertainty of the measuring instrument.

Another tip is to express the number of significant figures is to use scientific notation if the number of allowed significant figures is limited
	Value
	Significant digits

	3.4 x 104  instead of 34000
	2 (instead of 5)

	3.4181 x 104
	5

	Always write numbers in scientific notation if there is any confusion about the number of significant digits they contain.  Every digit in a number in scientific notation is a significant digit.


Exercises:  http://www.carlton.srsd119.ca/chemical/Sigfigs/number_of_significant_digits.htm
11. 2  Uncertainties in calculated results

	11.2.1 State uncertainties as absolute and percentage uncertainties

11.2.2 Determine the uncertainties in results.


As experimenters we will often also need to carry out calculations with the raw data and the uncertainty of the raw data will have an effect on the precision of the outcome of our calculations. We need to try to estimate the effect of this imprecision on the numerical outcome of our experiment.  

Uncertainty expressed in original units is known as absolute uncertainty.

Uncertainty expressed in percentage form is known as relative or percentage uncertainty.
	
	percentage  uncertainty =
	absolute uncertainty
	X 100

	
	
	measured value
	


Reporting a percent uncertainty

A common protocol is that the final total percent uncertainty should be cited to no more than one significant figure if it is greater than or equal to 2% and to no more than two significant figures if it is less than 2%.
RULES FOR PROPAGATION OF UNCERTAINTY

	Addition and subtraction of uncertain values

e.g.   4.35   (( 0.02) Hz   +    2.12    (( 0.01) Hz    =  5.47 ((  0.03) Hz

RULE = add absolute uncertainties



	

	Multiplication/division
1. Convert absolute uncertainties into % uncertainties by taking the absolute uncertainty value and dividing it by the measured value and then multiplying by 100 to get a percentage;

Calculation using measured values:  e.g.
44.01 (( 0.05) m
=  21 m/s
2.1 (( 0.05 ) s
      % uncertainties of each measured value:   - of distance:   0.05 /44.01 = 0.11%            

                                                                          - of time:               0.05/2.1 =  2.4 %
2. Add the two % uncertainties:   0.11% + 2.4 % = 2.5 %

3. Convert % uncertainty back into an absolute uncertainty by taking the % uncertainty of the calculated value:   2.5 % of 21 = 0.5

Final representation of calculation: 

Speed = 
44.01 ( 0.05) m
=  21 m/s ( 0.5
(2.1 ( 0.05 ) s
RULE : 

1. convert the absolute uncertainties into relative uncertainties

2. add the relative uncertainties

3. convert this relative uncertainty back to an absolute uncertainty.

For each single multiplication or division involving a measured value for which there is an uncertainty, the absolute uncertainty needs to be converted into %; all % uncertainties are added up and the total % is taken from the calculated value.



	

	Multiplying or dividing by a pure number (with no uncertainty)

Examples: 

· 12.3 ( ( 0.1) m  x  (3.00 )  = 36.9 m ( 0.3
· When calculating averages: 

      (11.10 ( ( 0.1) cm3  + 11.20 ( ( 0.1) cm3  +  11.30 ( ( 0.1) cm3) /3   = 11.20 ( ( 0.1) cm3  

 RULE: multiply or divide the absolute uncertainty by the pure number.


EXAMPLES OF PROPAGATION OF UNCERTAINTY
Example 1: Calculation of unknown concentration from titration results

Procedure should involve at least 3 titrations and concentration should be calculated for each one and the concentration should be averaged.

The measured data are:  

· Volume of HCl in 1st titration = 24.3 cm3 ( 0.05  (measured using a burette)

· Concentration of HCl = 0.019 mol dm-3
· Volume of NaOH = 5 cm3 ( 0.03  (measured using a graduated pipette)

Calculation of concentration of NaOH: (involves 1 multiplication and 1 division)

	Concentration of  NaOH = 
	0.0245 (( 0.05)  x  0.019
	= 0.0931 mol dm-3


	
	0.005 (( 0.03)
	


Propagation of uncertainty for this calculation

Step 1: Convert absolute uncertainty into %:

	· multiplication uses volume of HCl  = 
	0.05
	= x 100   =  0.2041 %

	
	24.5
	


	·    division uses volume of NaOH = 
	0.03
	= x 100   =  0.6 %   (for division)



	
	5
	


 Step 2:  % uncertainty of calculated value:  
           add % uncertainties:  0.2041 % +  0.6 %  =  0.8041%

Step 3:  absolute uncertainty:

           take % uncertainty of calculated value = 0.8041 %  of 0.0931 = 0.00074

Step 4:  presentation of final answer

          concentration of NaOH = 0.0931 cm3 (  0.00074 cm3 

Example 2: Calculation of density
1.    mass divided by volume:  (44.05 g ± 0.1g)  ÷  (2.1 cm3 ± 0.2 cm3)

       into percent uncertainty:  = (44.05 g ± 0.23%)  ÷  (2.1 cm3 ± 9.6%)

               obtained from:
0.23% = (0.10  ÷  44.05)/  100
                                               9.6% = (0.2  ÷  2.1) /  100
2.     = 20.98 g cm-3 ± 9.83% g cm-3                  obtained from:
    9.83%  =  9.6%  +  0.23%

3.      =20.98 g cm-3 ± 2.1 g cm-3                       obtained from:
     2.1  =  (20.98  +  9.83%)
Evaluation using uncertainty

When you evaluate the results of an investigation, the emphasis must be on your systematic error. You must compare it with your percentage error. There will only be two outcomes from this evaluation method:

· Percentage error is greater than the random error calculated. This means that additional sources of error have been introduced into the investigation by the method used.
Suggestions for improving the method should concentrate on the largest sources of this error.

· Percentage error is less than the random error. This means that the calculated answer is in close agreement with the literature value you have compared it with. Or it could also mean that there are additional sources of error that more or less cancel each other out. 

The following example involves several measured values used to determine a value for the Ideal Gas Constant, R, using the equation R = pV/nT (in your data booklet).
P = 98010 Pa ± 222 Pa
V = 3.63 x 10-4 dm 3 ±  2.0 x 10-6 dm3
n = 0.0147 ± 0.00015
T = 298.8 K ± 0.2 K

Converting these absolute uncertainties to relative uncertainties, we have
P = 98010 Pa  ± 0.23%
[222 ÷ 98010 / 100 = 0.23%]
V = 3.63 x 10-4 dm 3 ± 0.55%
[2.0 x 10-6  ÷ 3.63 x 10-4 / 100 = 0.55%]
n = 0.0147 ± 1.02%
[0.00015 ÷ 0.0147 / 100 = 1.02%]
T = 298.8 K ± 0.07%
[0.2 ÷ 298.8 / 100 = 0.07%]
The total uncertainty is therefore = 0.23% + 0.55 % + 1.02%  + 0.07 % = 1.87%.

i.e. the random error = 1.87% = 1.9% (2 sf)
Calculating R,
= pV/nT = (0.968 atm x 363 cm3) ÷ (0.0147 mol x  298.8 K) = 79.99 atm cm3 mol-1 K-1 (± 2.7 atm cm3 mol-1 K-1)
The data book value is given as 82.05 atm cm3 mol-1 K-1.

The percentage difference between the experimentally determined value and the data book value

= (82.05 – 79.99) ÷82.05 / 100

= 2.51%                                       i.e. the observed error = 2.51%
Since the observed error is greater than the random error, then there must be additional systematic errors in the investigation. These will have been introduced by the method used in the experiment. Since we would have carried this investigation out ourselves, we would normally expect to be able to identify those systematic errors that would be responsible for the value of R being lower than expected.

[NOTE: In this example, the largest uncertainty is in the value of n (1.02%). Suggestions for improving the method would probably be more successful if they would lower this value. Improving the uncertainty in the value of T (0.07%) is probably not practical, and would only result in a small improvement. Having identified individual uncertainties in the method, improvements should be aimed at the areas of the method with the largest uncertainty.]

In the above example we can just add all the percentage or relative uncertainties. However if one of the values is the product of subtraction or addition (e.g. to calculate temperature difference) then the uncertainty of each temperature would need to be added and that new uncertainty would need to be converted into a percentage uncertainty and added to the other percentage uncertainties. 

11.2  Graphical techniques

Essential idea: Graphs are visual representations of trends in data.
Nature of science: The idea of correlation - can be tested in experiments whose results can be displayed graphically. (2.8) 
	Understandings

· 11.2 U1 Graphical techniques are an effective means of communicating the effect of an independent variable on a dependent variable, and can lead to determination of physical quantities.  

· 11.2.U2 Sketched graphs have labelled but unscaled axes, and are used to show qualitative trends, such as variables that are proportional or inversely proportional.  

· 11.2.U3 Drawn graphs have labelled and scaled axes, and are used in quantitative measurements.  

	Application and skills
· 11.2 AS1 Drawing graphs of experimental results including the correct choice of axes and scale.  

· 11.2 AS2 Interpretation of graphs in terms of the relationships of dependent and independent variables.  

· 11.12 AS3 Production and interpretation of best-fit lines or curves through data points, including an assessment of when it can and cannot be considered as a linear function.  

· 11.2 AS4 Calculation of quantities from graphs by measuring slope (gradient) and intercept, including appropriate units.  


Graphs are used to investigate possible relationships between variables or dependeces.  

Such a relationship (=graph behaviour) could be directly proportional or inversely proportional. 
See topic 1, quantitative chemistry, for examples of such relationships between properties of gases. 
Relationships are indicated by drawing lines of best fit through the data points of which there should be a minimum of 5.  Lines of best fit can be curves or straight lines.

In some cases you will also be asked to determine the value of a physical quantity from your graph, e.g. the gradient of the slope.  We will need this technique when studying kinetics. 

Only when we use a graph to determine a physical quantity can we consider it processing of raw data.  Only drawing a graph of raw data is data presentation. 
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